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INTRODUCTION

Many mathematical and physical problems are concerned with the inter
polation of finite sets of data by certain functions, or with looking for a
suitable function to approximate a function about which only little infor
mation is given. In many cases one uses polynomial spline functions. but in
many other situations. for instance if the interpolated function has some
singularities and is regular at infinity. polynomial spline functions are inef
fective. Then rational functions or rational spline functions may be more
suitable. If therc are a lot of data points and we want the denominator and
the numerator of the rational function to be polynomials of low degree. then
rational spline functions are more efficient than rational functions.

A basic problem related to the theory of interpolation is that of estimating
the total number of zeros of a function. In Section I of this paper. we obtain
some results about a certain class of real analytic functions and rational
splines (Theorems I and 2).

As for real spline functions, many authors have been engaged in this work
and many results have been obtained (see 18, 10-12, 15\).

Due to the many papers about complex splines (see [1-7. 9, 13. 14. 16 [),
we have obtained a deeper understanding of how the complex splines playa
special role in the theory of approximation (of analytic or pseudo-analytic
functions, etc.). but very little has been published about the zeros of complex
spline functions. In fact, till now. the fundamental theorem of algebra for
complex splines has not becn established. We attempt to cxplorc this
problem in Section 2. In connection with Section 1, we obtain a sharp upper
bound of the zeros of a certain class of complex splines (Theorem 3 ).
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ZEROS OF RATIONAL AND COMPLEX SPLINES

1. THE ZEROS OF A CERTAIN CLASS OF
REAL ANALYTIC FUNCTIONS AND RATIONAL SPLINE FUNCTIONS
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Let g(x) be a real analytic function defined on (a, b) c £1 = (-00, +00).

We assume that a, b are not the limit points of the zeros of g(i)(x) (i ~ m).
The family of all such functions is denoted by A (a, b).

DEFINITION 1. The class Gm(a, b) is the subclass of those g E A (a, b)
which satisfy the following conditions: If for some XE (a, b), g(ml(X)=O,
gill/ 1\\') *' 0, then g(II/I(X) has a zero at .\' of multiplicity a, a is an even
number and g(lI/- I)(.\,) g<m t(1I(.\,) < O.

We list some examples.

EXAMPLE 1. g(x) E A(a, b), glm)(x) > 0 (or g(lI/l(x) < 0) for all
x E (a, b). All the polynomials of exact degree m are contained in this class.

EXAMPLE 2. g(x) is the solution of the following differential equation

g(lnl(X) - (x - .\')" f(x) = 0, a ;): 0, a even.

Here .\'E (a, b), and g(x) satisfies the condition g<1I/ 11(.\')fl(1 1(,\') < 0 at the
point .\" wheref(.x-) (>0) is a real analytic function on (a, b).

Let Zm(g; (a, b)) denote the total number of zeros of g(x) in (a, b)
counting multiplicities, all the multiplicities considered are less than or equal
to m.

S' (cJ;;' denotes the maximum number of sign changes in the ordered
sequence Co , ... , Cm when each zero entry is allowed to be + I or -1.

We now extend the Sudan Fourier theorem to the class GII/(a, b).

THEOREM 1. If g(x) E GII/(a, b), then

ZII/(g; (a, b)) = m- S + ((~l)j gUI(a + t;))~' - S· (gljl(b - e));;' - H,

where H;): 0 (H an integer), and E is a small positive number.

Remark. If g(x) is a polynomial of degree m, then we have the classical
Sudan Fourier theorem for polynomials; in this case H;): 0 is an even
number.

Proof Since a, b are not the limit points of the zeros of g(i) (x)
(co ~ i ~ m), g(i)(x) is a real analytic function, and it has only a finite
number of zeros. Let ¢j (j = T,7J) be all the distinct points in (a, b) in their
natural order at which g(x) or any of its ith derivatives (i ~ m) vanish.
Furthermore, set ¢o = a, ¢/l+ 1 == b.
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Let W( ¢,) and W 2(¢ I) be the following numbers:

W(() = S + ((-I YgUI(¢J);;' + S * (gU,(¢;));;'_ 111.

W,(¢,) = s' (gUI(¢k
j

- £));;' + S' ((-I YgUI(¢k
j
+ £));;' - 111.

Here 1¢kf; I are the distinct zeros of gl l1l l(X) and I: is a small positive
number. '

By using Taylor's expansion of g(x) near the point C,k
j

' i = I.... I. we can
prove

i = 1•...• 1. (I)

andif¢i*¢kj(j= I..... /). then (see 181)

h,>O: hi even. (2)

Let I denote the set of integers 1k I •...• k;f. It is easy to prove that

Theorem I follows now from (I). (2). (3). Q.E.D.

DEFINITION 2. The families CT(r. n). RT(r. n). G".t(E I ) are defined as
follows. Let CT(r. n) denote the family of complex splines defined on the real
x-axis with knots lxjf; I: if T(x) E CT(r. n) then

T(x) = g,,(x) + \ ' d k (.,< - x k )': •

k I

\' d ( ,,-_ kX-Xk) =0.
k I

where g,,(x) is a complex polynomial of degree n. jd k i being complex
constants. Let RT(r. n) denote the family of all real splines in CT(r. n).
G".t (E) is the family of all rational functions

T(x)
R(x)= (x-A)'" T(x) E RT(r. 11).

'I -li-

the
such that R(x) E G,,(Yi) if R(x) io 0, x E Yj' j = (O,r + I). where

ITj.Till )· /0= (-oo,T I ). /'II=IT,,,.+oo). 1TI .. ··.T,lf IS
rearrangement of lA, Xl •••• ' x,f in the natural order.

We now follow Schumacher 1151 and define the multiplicities of zeros of
T(x) on (-00. +(0) in the usual way (see 1101).

The distinct points give the following cases:
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If T(x) == 0, x E (-00, XI) U Ix,., +(0), define Z(T, (-00, XI) U Ix,., (0)) =
n + 1. If T(x) is a polynomial of degree m (m ~ n) on (-00, Xl) U [X,., +(0),
then we say T(x) has a zero at infinity with multiplicity n - m.

For later use, we list the following Lemma 1 given by Melkman (see
110 I); it also easily follows from the proof of Theorem 1.

LEMMA 1. Let T(x) be a function of RT(r, n), (a, b) c £ I' let there be k
(k) n + 2) knots in (a, b) denoted by 1¢"; f~, then

k

- S + (T11J(b- ));;" - Zh - \ ' Wi'
i 1

where W; = S+((-1)/ T(/)(¢";+));;J + S+(T(/)(¢";-))'" 1 - 11; - elj + 1, elj is

the multiplicity of the zero ¢";. Here 11;, n", I1 h are the degrees of T(x) on
(¢";, ¢";II)' (a, ¢"I) and (¢"k' b), respectively, and h) 0, Wi) 0.

From Lemma 1 we have

LEMMA 2. If T(x) E RT(r, 11), thel1

(i) Z(T, £1) ~ no + r, where r is the number of knots in £1' no is the
degree of T(x) on Yo U y,..

(ii) If T(x) == 0, X E (XI' x k ), then

Z(T, (XI' x k )) ~ k - n - 2,

(iii) If n = 1, then

Z(T, £1) ~ r,

~r- 1,

rodd,

r even.

THEOREM 2. Let R(x) = T(x)j(x - A)1l E Gil. \(£1)' and suppose that
T(x) has the form

II

T(x) = \' A.xi
~ I

i--=O

(xE yoUy,.), All I+AnAIli=O.

(i) Case A is not a knot: If A II i= 0, then

if r, n odd or r, n even,

if r odd (even) and n even (odd).
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If All = 0, A 11- I *' 0, then

~r-I

HAN-LIN CHEN

if I' odd (even) and n even (odd),

if 1', /1 odd or 1', n even.

(ii) Case;. is a knot: If A 11 *' 0, then

~r-I

If All = 0, then

A(R,E))~r-1

~r-2

if r. n odd or 1', n even.

if r odd (even) and n even (odd).

iII', n odd or r. n even,

if I' odd (even) and n even (odd).

Proof The lth derivative of R(x) may be written as

RtI)(x)= (-I)' \." (-I)k(n+l-k-I)!(.l) T'kl(X) (5)
(n-1)! AO k (X-A)IlI",'

where x*' A.
From (5) and T(A) *' °we see that if T(x) has a zero of multiplicity u at

X, then R(x) has a zero at the same point with the same multiplicity, and
vice versa. If T(x) == °on some interval Yj' we may apply a linear transfor
mation and use Lemma 2, noting that T().) *' 0, to confirm that the above
conclusions are valid.

Assume T(x) =k 0, x E Yj j = 0,-,:+1.
Let W,(x)=S+(R(i)(xj-e));;+S'((-lfR(i)(xj+i:))::-n. From the

Taylors expansion of R(x), we infer that W,(x;)=u,-+h i • hi~O. if
R(Il)(xj~)=R(1l1(Xj+)=0 (or R11l)(Xj_)=0. R'lll(Xj+) *,0), and W,(x;l=
Qj-l +l1j , hj~O, if R(Il)(xj+) = 0, R(Il)(xj-)*,O (or R(I/)(xj-)*,O,
R(Il)(xj+) *' 0).

Let 10 = (-00, A), I) = (00. A): by using Theorem 1 we obtain

Z(R, 1
0

U I)) = 2n + I' - S + ((-1)' R (/I(_N));: - S + (R(/)(N))::

--S' (R(/)(A -I;));; - S "((_1)' R'/)(A + I;);: - '>' hi L Hi'

where hi ~ 0, Hi ~ 0. It is easy to prove that
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for sufficiently small e, e > 0. For sufficiently large Ix I, we have

sign R(/)(x) = signl (-I)' Xl + I (A,,_I + nAA 11) I, I) I,
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= signA", All * 0,

= sign(xA"_I)' All = 0,

1=0,

1=0.

From the expressions above and Z(T, E I) = Z(R, E I)' Theorem 2 follows
from the fact that the definition of zeros of T(x) is chosen so that T(x)
changes sign if Z(T, x) (=a) is odd, and does not change sign if Z(T. .\') is
even.

2. THE ZEROS OF A CERTAIN CLASS OF

COMPLEX SPLINE FUNCTIONS

Let F be the unit circle, L1: is a set of points 1zy; arranged in counter
clockwise order on r. Let Fj be the circular arc ZiZh I = IZ Z = eill.

(); < () < (}jt I f, Zi = eifJi, Zr+ 1= ZI' (}n 1 = (}I + 2TC.
j (n) is the family of complex polynomial splines of degree n defined on T

with exactly r knots; if 5(Z) E .j (n), then 5(Z) E en I (r).
If ~ E 1\1z ' then we may define the multiplicity a( of the zero of 5(Z) E

/ (n) at the point ~ in the usual way.
But near any point ~ E L1 z' 5(Z) can be written as

5(Z) = Ci_I(Z - Z;)",

= Ci(Z - zy.

Let ow' bc> be two real functions of rp:

ZETi I'

ZETi ,

C i 1*°.
Ci*O.

b", = Re(rpC;) * 0, (6)

where rp *° is a complex number; if Ow b,o <° is valid for all complex
rp(rp * 0) satisfying (6), we then define ~ (=Z;) to be a zero of 5(Z) of
multiplicity n + 1, otherwise n.

If 5(Z) == °for Z E T j then we say 5(Z) has a zero interval and count it
as a zero of 5(Z) of multiplicity n + 1.

Let t(x) be a linear transformation Z = w(x - i)/(x + i), where x is a real
variable, i is the imaginary unit, w is a point on Fr. The set L1 z ,= jZi f 'I is
transformed onto the set L1 x = (x; f '; by I:, I such that I,,, : E I -> T.

-00 <XI < ... <x,<+oo.

If w = Z I' then the point Z I corresponds to infinity, and 1Zi f; are
converted to j.x);.
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Now we define a function T,,,(x) as follows,

Tjx) = RejST"l(w)(-2wi) a (x + i)1I 5(Z(x))i, (7 )

where a is the multiplicity of the zero w of 5(Z), a;? 0; in a neighbourhood
of the point w, 5(Z) can be written as 5(Z) = (Z - w)" g(Z), g(w) *" 0,
g(Z) = L~ "biZ'. Since Z - w = -2iw/(x + i), 5<al(w) = a! g(w), we have
T w =a!Re{g(w)L7 o"b,w'(x-i)/(X+i)1I n 'f, for Ixi sufficiently large.
We see that the main term in T,,,(x) is XII a(x E Of)' its coefficient is
a! Ig(w)1 2 > 0, therefore Tjx) ok 0, x EEl' Since 5(Z) E j (n). it is easy to
verify that T,,,(x) belongs to RT(r, n).

If 2 *" w is a zero of 5(Z) of multiplicity fJ and .>: = I", I (2) is the
corresponding point in E I' it is not hard to see that T,)x) has a zero at X of
multiplicity at least (1. Therefore

(8)

We define a subclass GII(F) c:; / (n) as follows. 5(Z) E GII(F) if R(x) =

T,,)(x)/(x - A.)II E GII.l(E]) for any wand A. We then have

THEOREM 3. Let 5(Z) E GII(n. Then one has

Z(5, F),s;, r.

,s;, 1'- L

(( n, I' odd or n. I' even,

otherwise.

If 5(Z) has a simple zero ~, ~ is a knot, then Z(5, F),s;, I' - l. If 5(Z) has a

simple zero ~, ~ is not a knot, then

Z(5, F),s;, 1',

,s;,r- L

(( n, I' odd

otherwise.

The proof of this theorem depends on some lemmas,
Suppose 5(Z) == 0, Z E r i , but 5(Z) ok 0, Z E r. With no loss of

generality, we may assume j = r. By using a linear transformation l,)x).
eu Err' we obtain a function Sex) = (x + i)1I 5(Z(x)) belonging to eT(r, n)
such that either the real part of S(x) or the imaginary part cannot vanish
identically on E]. Denote one of them by T(x), T(x) ok 0, x EEl' but
T(x) == 0, x E Yo U Yr' From Lemma 2, (ii), and (8), v"e infer Z(5, r I rr),s;,
Z(T; (x I , X r)) ,s;, I' - n - 2. In view of the definition of the zero interval of
5(Z), we obtain Z(5, F) ,s;, r~· 1. We have the following

LEMMA 3. Let 5(Z) E j (n), if 5(Z) ok 0, Z E r. but for some k.
5(Z) == 0, Z E r k ; then Z(5, T),s;, I' - 1.



ZEROS OF RATIONAL AND COMPLEX SPLINES 315

From now on, we assume that S(Z), Tw(x) and R (x) have no zero
intervals.

If S(Z) E /(n) and r (the number of knots) ~ n + I, then S(Z) will be a
polynomial of degree n; thus, later on, we only consider the case r;;:, n + 2.

LEMMA 4. Let S(Z) E /(n), S(Z) have the following form on Fr ,

S(Z) = anZn + ... + ao, Z E T" an *- 0. Then we can find a point w on F r

such that

S(w) *-0, Im{wS(w) S'(w))f = 0. (9 )

From Lemma 4, A Il =IS(w)1 2 >0, AIl_,=2ImIS(w)wS'(w)l,toO. We
then can choose), such that

A
Il

_, + n)'A n *- 0.

From (8) and Lemma 2 we have

LEMMA 5. If n = I, S(Z) E '/(1), then

( 10)

Z(S, T) ~ r,

~ r-I,

rodd,

r even.

From the proof of Theorem 2 and (8), we have

LEMMA 6. If S(Z) E Gn(T), then Z(S, T) ~ r + 1.

COROLLARY. If S(Z) E Gn(T), then the total number of zeros of the
function Tw(x) defined by (7) can be estimated as Z(T"" E,) ~ r + 1.

LEMMA 7. Let Tjx) be defined by (7), w satisfv (9), n;;::, 2. IfT,,,(x) has
no zero with multiplicity less than 2, then

~r-I,

if r, n odd or r, n even,

otherwise.

Proof In view of the hypothesis, it is easy to prove that there are two
knots x k ' XI such that T(x k ) *- 0, T(x l ) *- 0. Since A k *- 0, A k _, *- 0, we may
choose A= x k (or XI) satisfying (10); since A is a knot, we obtain from
Theorem 2 that Z(Tw' E,) = Z(R, E,) ~ r. If n is odd (even) T,,,(x) has an
odd (even) number of sign changes, so Lemma 7 is proved. Q.E.D.

LEMMA 8. If S(Z) E Gn(T), S(Z) has a simple zero ~, ~ is a knot, then
Z(S,T) ~ r - 1.
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Proof With no loss of generality, we assume ¢ = Z I' Under a linear
transformation IzJx), we get the real spline T(x) = Rel(-2iZJ 1 g(ZI)
(x + it S(Z(x))f, where g(x) is a polynomial of degree n - 1. T(x) has
knots lxi};, and T(x) is a polynomial of degree n - 1 on (-iX), x,) and

(x" iX)).

Case I.

Let Je be a point on the real x axis satisfying

where L=Max(I,2/(2n-l)!M/mf, M=Max 1sJ •. 1l IlrJ1 (x 2 )1, m=
ITIll 1)(xJI. Let R(x) = T(x)/(x - Je)/, since TIll 1)(X 2 ) > 0, T11l)(X,_) =

r")(x r+) = 0. Therefore, S+((-1)'R(/)(x 2+));; I+S+((R(/)(x,-));; 1=
I + S+ (-TIIl-I)(X,), T(Il)(X,+ )).

Following the proof of Theorem 2, we have

Z(R I U I ) = r .- 1 - \ ' h - \ ' H
~ 0 I __ ./ __ . /~

Hence Z(R,IoUII)~r-2,Z(T'£I)~r-2; since S(Z) has a zero at ZI'
then S(Z, r) ~ I' - 1.

Case 2.

We choose Je satisfying

(c) T(Je) '* 0, (d) Je<x-K,

where K=Maxp,2/(2n-1)!M I/m, 2/(2n-I)!MJim" 2/(2n-I)!

M 2/m l f, M) = MaxI <J<"- I Ir J1 (x 3)1, M 2 = MaXI <J"-" 1 ITUI(X,)I, m l =
Ir" II(x 2)1, m2 = Ir/)(x 3+)I. We then have h, = S + ((-I)' R(/)(x,+ )):: 1 +
S' (R(/)(x 2- ))~_I = 1, h3 = S+((-l)1 R(/)(x,+ )):: 1+ S + (R(/)(x,));: I? I;
therefore, Z(R, 10 U II) ~ I' - 3, Z(T, £1) ~ r - 3, Z(S, r) ~ I' - 2. The
remaining cases can be treated in the same way.

LEMMA 9. Let S(Z) E GIl(r). If S(Z) has a simple zero ¢, ¢ is not a
knot, then

Z(S,r) ~ r - 1,

~ r,

if n is even or ifn odd and I' even,

n. r odd.



ZEROS OF RATIONAL AND COMPLEX SPLINES 317

Proof With no loss of generality, let ~ belong to the interior of r ,.
Under a linear transformation fl(x) : Z = ~(x - i)/(x + i), we obtain a real
spline T(x) with knots lxj};, and T(x) = L;;-I Akxk, x E Yo UYr' All_I> 0.
We choose A, T(A) i= 0, using the method in the proof of Lemma 8 (but here
we take x I instead of x 2 ) we have hI? 1 and

By using the definition of the multiplicity of zero of real splines iit is easy
to verify the assertion of Lemma 9 for the following three cases: (i) n odd, r
odd, (ii) n odd, r even, (iii) n even, r odd.

Now suppose n, r are even. We then choose A such that the main term in
the expansion (5) for R(/)(x) is one which contains the highest derivative of
T(x) with respect to x when xE [x"xkl.

Since TIIl-1)(X) is a linear function of x on Yi (Yi = lXi' Xi t ,)), °~j ~ r,
xo=-oo, xr+,=+OO, T11l-')(x,)TI Il 1'(xr)=((n-I)!A Il _,)2>0.
T IIl - II (x) has an even number of sign changes, since r is even, thus there is
one interval rk where T11l-1)(X) does not change sign. We may assume
TI" 'I(X) > 0, x E r k ; hence

(1I)

By the choice of A, we assert R(Il)(xk_I -)i=O and R1Il'(Xk+)i= 0. From
the proof of Theorem 2 we now have the following expression

W,(x k ,) + W,(x k )

=(ak_1-1)+S+(R IIl ')(xk,),R11l)(Xk ,-))+(ak-!)

+ S + (RIll ')(xk), R1IlI(Xk-)) + S+ (_R 11l - "(xk I)' RIIl'(Xk ,+))

+St(_R IIl "(xk),RIIlI(Xk+))' (12)

If TIIlI(Xkl+)i=O, the choice of A yields sign(R1Il'(x" ,+))=
sign(T1Il'(xk_I +)) = sign(T11l)(xc)) = sign(R(k)(xC))i= 0, from (II),
RIll "(xk ,) R11l-1'(Xk) > 0; hence

( 13)

But sign(R1Il'(x
l
+)) = sign(T11l1(x l + )), sign(R11l1(x,_)) = sign(--T11l "(x, )).

sign(R11l-')(x,))=sign(TIIl II(X,)), so that
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S I ((~l){ R(/)(x l +»;; 1+ S+ (R(/'(XI~));; I

=S+(-T'" jl(X I), TUlI (x
l
+))+S'(T(1l II(X

I
),_T'" II(X

I
))

= S+(~T(1l II(X I), T'/I(X I+)) + 1. (14 )

From the proof of Theorem 2, we have

W,(X I );;;' al'

From (13), (IS), if k > 2, we conclude from (13), (IS)

(15)

namely, hi + hk 1+ hk ;;;' 2. We then have Z(R, In U II) ~ r - 2.
If k = 2, then from (12), (14) we have a l + a 2 ~ W,(x j ) + W,(x 2 ), namely,

hi + h2 ;;;, 2. Then from the proof of Theorem 2, we infer that
Z(R, In U II) ~ r - 2.

The remaining cases can be treated in the same way, so that we still have
Z(R, In U IJ ~ r - 2; then Z(T, E I ) ~ r _. I. hence Z(S, n ~ r - 1. Q.E.D.

From Lemmas 3, 5, 7, and 8 and (8), Theorem 3 follows directly.
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