The Zeros of Rational Splines and Complex Splines

Han-Lin Chen
Institute of Mathematics. Academia Sinica, Beijing. Peoples Republic of China
Communicated b: P. L. Butzer
Received November 30. 1981

Introduction

Many mathematical and physical problems are concerned with the interpolation of finite sets of data by certain functions, or with looking for a suitable function to approximate a function about which only little information is given. In many cases one uses polynomial spline functions, but in many other situations, for instance if the interpolated function has some singularities and is regular at infinity, polynomial spline functions are ineffective. Then rational functions or rational spline functions may be more suitable. If there are a lot of data points and we want the denominator and the numerator of the rational function to be polynomials of low degree, then rational spline functions are more efficient than rational functions.

A basic problem related to the theory of interpolation is that of estimating the total number of zeros of a function. In Section 1 of this paper, we obtain some results about a certain class of real analytic functions and rational splines (Theorems I and 2).

As for real spline functions, many authors have been engaged in this work and many results have been obtained (see $|8,10-12,15|$).

Due to the many papers about complex splines (see $|1-7,9,13,14,16|$). we have obtained a deeper understanding of how the complex splines play a special role in the theory of approximation (of analytic or pseudo-analytic functions, etc.), but very little has been published about the zeros of complex spline functions. In fact, till now, the fundamental theorem of algebra for complex splines has not been established. We attempt to explore this problem in Section 2. In connection with Section 1, we obtain a sharp upper bound of the zeros of a certain class of complex splines (Theorem 3).

1. The Zeros of a Certain Class of Real Analytic Functions and Rational Spline Functions

Let $g(x)$ be a real analytic function defined on $(a, b) \subset E_{1}=(-\infty,+\infty)$. We assume that a, b are not the limit points of the zeros of $g^{(i)}(x)(i \leqslant m)$. The family of all such functions is denoted by $A(a, b)$.

Definition 1. The class $G_{m}(a, b)$ is the subclass of those $g \in A(a, b)$ which satisfy the following conditions: If for some $\bar{x} \in(a, b), g^{(m)}(\bar{x})=0$, $g^{(m}{ }^{\prime \prime}(\bar{x}) \neq 0$, then $g^{(m)}(x)$ has a zero at \bar{x} of multiplicity α, α is an even number and $g^{(m-1)}(\bar{x}) g^{(m+a)}(\bar{x})<0$.

We list some examples.
Example 1. $g(x) \in A(a, b), \quad g^{(m)}(x)>0 \quad$ (or $\left.\quad g^{(m)}(x)<0\right)$ for all $x \in(a, b)$. All the polynomials of exact degree m are contained in this class.

Example 2. $g(x)$ is the solution of the following differential equation

$$
g^{(m)}(x)-(x-\bar{x})^{a} f(x)=0, \quad \alpha \geqslant 0, \quad \alpha \text { even }
$$

Here $\bar{x} \in(a, b)$, and $g(x)$ satisfies the condition $g^{(m-1)}(\bar{x}) f^{(a)}(\bar{x})<0$ at the point \bar{x}, where $f(x)(>0)$ is a real analytic function on (a, b).

Let $Z_{m}(g ;(a, b))$ denote the total number of zeros of $g(x)$ in (a, b) counting multiplicities, all the multiplicities considered are less than or equal to m.
$S^{+}\left(c_{i}\right)_{0}^{m}$ denotes the maximum number of sign changes in the ordered sequence c_{0}, \ldots, c_{m} when each zero entry is allowed to be +1 or -1 .

We now extend the Budan Fourier theorem to the class $G_{m}(a, b)$.
Theorem 1. If $g(x) \in G_{m}(a, b)$, then

$$
Z_{m}(g ;(a, b))=m-S^{+}\left((-1)^{j} g^{(j)}(a+\varepsilon)\right)_{0}^{m}-S^{+}\left(g^{(j)}(b-\varepsilon)\right)_{0}^{m}-H
$$

where $H \geqslant 0$ (H an integer), and ε is a small positive number.
Remark. If $g(x)$ is a polynomial of degree m, then we have the classical Budan Fourier theorem for polynomials; in this case $H \geqslant 0$ is an even number.

Proof. Since a, b are not the limit points of the zeros of $g^{(i)}(x)$ $\left(c_{0} \leqslant i \leqslant m\right), g^{(i)}(x)$ is a real analytic function, and it has only a finite number of zeros. Let $\xi_{j}(j=\overline{1, \beta})$ be all the distinct points in (a, b) in their natural order at which $g(x)$ or any of its i th derivatives ($i \leqslant m$) vanish. Furthermore, set $\xi_{0}=a, \xi_{\beta+1} \equiv b$.

Let $W\left(\xi_{i}\right)$ and $W_{2}\left(\xi_{1}\right)$ be the following numbers:

$$
\begin{aligned}
W\left(\xi_{i}\right) & =S^{+}\left((-1)^{j} g^{(j)}\left(\xi_{i}\right)\right)_{0}^{m}+S^{+}\left(g^{(j)}\left(\xi_{i}\right)\right)_{0}^{m}-m . \\
W_{i}\left(\xi_{i}\right) & =S^{+}\left(g^{(j)}\left(\xi_{k_{i}}-\varepsilon\right)\right)_{0}^{m}+S^{+}\left((-1)^{j} g^{(j)}\left(\xi_{k_{i}}+\varepsilon\right)\right)_{0}^{m \prime}-m .
\end{aligned}
$$

Here $\left\{\xi_{k_{i}}\right\}_{i}^{l}$, are the distinct zeros of $g^{(m p)}(x)$ and ε is a small positive number.

By using Taylor"s expansion of $g(x)$ near the point $\xi_{k,}, i=1, . ., l$, we can prove

$$
\begin{equation*}
W_{i}\left(\xi_{k_{i}}\right)=u_{k_{i}}+h_{h_{i}}, \quad h_{k_{i}} \geqslant 0, \quad i=1, \ldots . l \tag{1}
\end{equation*}
$$

and if $\xi_{i} \neq \xi_{k_{i}}(j=1, \ldots . l)$, then $($ see $|8|)$

$$
\begin{equation*}
W\left(\xi_{i}\right)=\alpha_{i}+h_{i}, \quad h_{i} \geqslant 0 ; \quad h_{i} \text { even. } \tag{2}
\end{equation*}
$$

Let I denote the set of integers $\left\{k_{1}, \ldots, k_{1}\right\}$. It is easy to prove that

$$
\begin{align*}
& \bigcup_{i \bar{I}} W\left(\xi_{i}\right)+\sum_{i \in I} W_{i}\left(\xi_{i}\right) \\
& \quad=m-S^{+}\left((-1)^{i} g^{(j)}(a+\varepsilon)_{0}^{m}-S^{+}\left(g^{(j)}(b-\varepsilon)\right)_{0}^{\prime \prime}\right. \tag{3}
\end{align*}
$$

Theorem 1 follows now from (1), (2), (3).
Q.E.D.

Definition 2. The families $C T(r, n), R T(r, n), G_{n, 1}\left(E_{1}\right)$ are defined as follows. Let $C T(r, n)$ denote the family of complex splines defined on the real x-axis with knots $\left\{x_{j}\right\}_{j}^{r} ;$ if $T(x) \in C T(r, n)$ then

$$
\begin{equation*}
T(x)=g_{n}(x)+\grave{\Sigma}_{k}^{\prime} d_{k}\left(x-x_{k}\right)_{+}^{n}, \quad \sum_{k}^{\prime} d_{k}\left(x-x_{k}\right)^{n} \equiv 0, \quad x \in E_{1}, \tag{4}
\end{equation*}
$$

where $g_{n}(x)$ is a complex polynomial of degree $n,\left\{d_{k}\right\}$ being complex constants. Let $R T(r, n)$ denote the family of all real splines in $C T(r, n)$. $G_{n, i}(E)$ is the family of all rational functions

$$
R(x)=\frac{T(x)}{(x-\lambda)^{n}}, \quad T(x) \in R T(r, n), \quad T(\lambda) \neq 0
$$

such that $R(x) \in G_{n}\left(\gamma_{j}\right)$ if $R(x) \neq 0, x \in \gamma_{j}, j=(\overline{0, r+1})$, where $\gamma_{j}=$ $\left.\left.\mid \tau_{j}, \tau_{j, 1}\right) . \quad \gamma_{0}=\left(-\infty, \tau_{1}\right), \quad \gamma_{r+1}=\mid \tau_{r+1},+\infty\right) . \quad\left\{\tau_{1}, \ldots, \tau_{r, 1}\right\} \quad$ is the rearrangement of $\left\{\lambda, x_{1}, \ldots, x_{r}\right\}$ in the natural order.

We now follow Schumacher $|15|$ and define the multiplicities of zeros of $T(x)$ on $(-\infty,+\infty)$ in the usual way (see $|10|)$.

The distinct points give the following cases:

If $\left.T(x) \equiv 0, x \in\left(-\infty, x_{1}\right) \cup \mid x_{r},+\infty\right)$, define $\left.Z\left(T,\left(-\infty, x_{1}\right) \cup \mid x_{r}, \infty\right)\right)=$ $n+1$. If $T(x)$ is a polynomial of degree $m(m \leqslant n)$ on $\left.\left(-\infty, x_{1}\right) \cup \mid x_{r},+\infty\right)$. then we say $T(x)$ has a zero at infinity with multiplicity $n-m$.

For later use, we list the following Lemma 1 given by Melkman (see $|10|$); it also easily follows from the proof of Theorem 1.

Lemma 1. Let $T(x)$ be a function of $R T(r, n),(a, b) \subset E_{1}$, let there be k $(k \geqslant n+2)$ knots in (a, b) denoted by $\left\{\xi_{j}\right\}_{1}^{k}$, then

$$
\begin{aligned}
Z(T ;(a, b))= & n_{a}+k-S^{+}\left((-1)^{l} T^{(l)}(a+)\right)_{0}^{n_{i}} \\
& -S^{+}\left(T^{(\prime)}(b-)\right)_{0}^{n_{b}}-Z h-\varliminf_{i=1}^{k} W_{i}
\end{aligned}
$$

where $W_{j}=S^{+}\left((-1)^{l} T^{(t)}\left(\xi_{j}+\right)\right)_{0}^{n_{j}}+S^{+}\left(T^{(t)}\left(\xi_{j}-\right)\right)^{n_{j}}{ }^{1}-n_{j}-\alpha_{j}+1, u_{j}$ is the multiplicity of the zero ξ_{j}. Here n_{j}, n_{a}, n_{b} are the degrees of $T(x)$ on $\left(\xi_{j}, \xi_{j+1}\right),\left(a, \xi_{1}\right)$ and $\left(\xi_{k}, b\right)$, respectively, and $h \geqslant 0, W_{i} \geqslant 0$.

From Lemma 1 we have

Lemma 2. If $T(x) \in R T(r, n)$, then
(i) $Z\left(T, E_{1}\right) \leqslant n_{0}+r$, where r is the number of knots in E_{1}, n_{0} is the degree of $T(x)$ on $\gamma_{0} \cup \gamma_{r}$.
(ii) If $T(x) \equiv 0, x \bar{\in}\left(x_{1}, x_{k}\right)$, then

$$
Z\left(T,\left(x_{1}, x_{k}\right)\right) \leqslant k-n-2, \quad Z\left(T, E_{1}\right) \leqslant k-1 .
$$

(iii) If $n=1$, then

$$
\begin{aligned}
Z\left(T, E_{1}\right) & \leqslant r, & & \text { rodd } \\
& \leqslant r-1, & & \text { reven. }
\end{aligned}
$$

Theorem 2. Let $R(x)=T(x) /(x-\lambda)^{n} \in G_{n, 1}\left(E_{1}\right)$, and suppose that $T(x)$ has the form

$$
T(x)=\sum_{i=0}^{n} A_{i} x^{i} \quad\left(x \in \gamma_{0} \cup \gamma_{r}\right), \quad A_{n-1}+\lambda n A_{n} \neq 0 .
$$

(i) Case λ is not a knot: If $A_{n} \neq 0$, then

$$
\begin{aligned}
Z\left(R, E_{1}\right) & \leqslant r & & \text { if } r, n \text { odd or } r, n \text { even }, \\
& \leqslant r+1 & & \text { if } r \text { odd }(\text { even }) \text { and } n \text { even }(\text { odd }) .
\end{aligned}
$$

If $A_{n}=0, A_{n-1} \neq 0$, then

$$
\begin{aligned}
Z\left(R, E_{1}\right) & =r & & \text { if } \quad \text { rodd }(\text { even }) \text { and } n \text { even }(\text { odd }), \\
& \leqslant r-1 & & \text { if } r, \text { odd or } r, n \text { even. }
\end{aligned}
$$

(ii) Case $\hat{\lambda}$ is a knot: If $A_{n} \neq 0$, then

$$
\begin{aligned}
Z\left(R, E_{1}\right) & \leqslant r & & \text { if } r, \text { nodd or } r, \text { n even. } \\
& \leqslant r-1 & & \text { if } \text { rodd }(\text { even }) \text { and } n \text { even }(\text { odd }) .
\end{aligned}
$$

If $A_{n}=0$, then

$$
\begin{aligned}
A\left(R, E_{1}\right) \leqslant r-1 & \text { if } r, \text { n odd or } r . n \text { even, } \\
\leqslant r-2 & \text { if } r \text { odd }(\text { even }) \text { and } n \text { even }(\text { odd }) .
\end{aligned}
$$

Proof. The l th derivative of $R(x)$ may be written as

$$
\begin{equation*}
R^{(1)}(x)=\frac{(-1)^{\prime}}{(n-1)!} \frac{!}{k-1}(-1)^{k}(n+1-k-1)!\binom{l}{k} \frac{T^{(k)}(x)}{(x-\lambda)^{n+1]}} . \tag{5}
\end{equation*}
$$

where $x \neq \lambda$.
From (5) and $T(\lambda) \neq 0$ we see that if $T(x)$ has a zero of multiplicity u at \bar{x}, then $R(x)$ has a zero at the same point with the same multiplicity. and vice versa. If $T(x) \equiv 0$ on some interval γ_{j}, we may apply a linear transformation and use Lemma 2, noting that $T(\lambda) \neq 0$, to confirm that the above conclusions are valid.

Assume $T(x) \neq 0, x \in \gamma_{j} j=\overline{0, r+1}$.
Let $W_{\varepsilon}\left(x_{j}\right)=S^{+}\left(R^{(i)}\left(x_{j}-\varepsilon\right)\right)_{0}^{n}+S^{\wedge}\left((-1)^{i} R^{(i)}\left(x_{j}+\varepsilon\right)\right)_{0}^{n}-n$. From the Taylors expansion of $R(x)$, we infer that $W_{(}\left(x_{j}\right)=\alpha_{j}+h_{j} . h_{j} \geqslant 0$, if $R^{(n)}\left(x_{j}-\right)=R^{(n)}\left(x_{j}+\right)=0$ (or $R^{(n)}\left(x_{j}-\right)=0, R^{(n)}\left(x_{j}+\right) \neq 0$), and $W_{i}\left(x_{j}\right)=$ $\alpha_{j}-1+h_{j}, \quad h_{j} \geqslant 0, \quad$ if $\quad R^{(n)}\left(x_{j}+\right)=0, \quad R^{(n)}\left(x_{j}-\right) \neq 0 \quad$ (or $\quad R^{(n)}\left(x_{j}-\right) \neq 0$, $\left.R^{(n)}\left(x_{j}+\right) \neq 0\right)$.

Let $I_{0}=(-\infty, \lambda), I_{1}=(\infty, \lambda)$; by using Theorem I we obtain

$$
\begin{aligned}
Z\left(R, I_{0} \cup I_{1}\right)= & 2 n+r-S^{+}\left((-1)^{\prime} R^{(\prime \prime}(-N)\right)_{0}^{n}-S^{+}\left(R^{(\prime)}(N)\right)_{0}^{n} \\
& -S \cdot\left(R^{(\prime \prime}(\lambda-\varepsilon)\right)_{0}^{n}-S^{+}\left((-1)^{\prime} R^{(\prime \prime}(\lambda+\varepsilon)_{0}^{n}-\sum h_{j}-\sum H_{i}\right.
\end{aligned}
$$

where $h_{j} \geqslant 0, H_{j} \geqslant 0$. It is easy to prove that

$$
S^{+}\left((-1)^{l} R^{(\prime)}(\lambda+\varepsilon)\right)_{0}^{n}+S^{i}\left(R^{(i)}(\lambda-\varepsilon)\right)_{0}^{\prime \prime}=0
$$

for sufficiently small $\varepsilon, \varepsilon>0$. For sufficiently large $|x|$, we have

$$
\begin{aligned}
\operatorname{sign} R^{(l)}(x) & =\operatorname{sign}\left|(-1)^{\prime} x^{l+1}\left(A_{n-1}+n \lambda A_{n}\right)\right|, & & l \geqslant 1, \\
& =\operatorname{sign} A_{n}, & & A_{n} \neq 0, \\
& =\operatorname{sign}\left(x A_{n-1}\right), & & A_{n}=0,
\end{aligned}
$$

From the expressions above and $Z\left(T, E_{1}\right)=Z\left(R, E_{1}\right)$, Theorem 2 follows from the fact that the definition of zeros of $T(x)$ is chosen so that $T(x)$ changes sign if $Z(T, \bar{x})(=\alpha)$ is odd, and does not change sign if $Z(T, \bar{x})$ is even.

2. The Zeros of a Certain Class of Complex Spline Functions

Let Γ be the unit circle, A_{z} is a set of points $\left\{Z_{j}\right\}_{1}^{r}$ arranged in counterclockwise order on Γ. Let Γ_{j} be the circular arc $Z_{j} Z_{j+1}=\left\{Z Z=e^{i \theta}\right.$. $\left.\theta_{j}<\theta<\theta_{j+1}\right\}, Z_{j}=e^{i \theta_{j}}, Z_{r+1}=Z_{1}, \theta_{r+1}=\theta_{1}+2 \pi$.
. $f(n)$ is the family of complex polynomial splines of degree n defined on Γ with exactly r knots; if $S(Z) \in, \quad(n)$, then $S(Z) \in C^{n}(\Gamma)$.

If $\xi \in \Gamma \backslash \Delta_{Z}$, then we may define the multiplicity α_{ξ} of the zero of $S(Z) \in$ $\neq(n)$ at the point ξ in the usual way.
But near any point $\xi \in \Delta_{7}, S(Z)$ can be written as

$$
\begin{aligned}
S(Z) & =C_{j-1}\left(Z-Z_{j}\right)^{n}, & & Z \in \Gamma_{i \ldots 1},
\end{aligned} \begin{gathered}
C_{i-1}
\end{gathered} \neq 0 .
$$

Let a_{φ}, b_{Q} be two real functions of φ :

$$
\begin{equation*}
a_{\vartheta}=\operatorname{Re}\left(\varphi C_{j-1}\right) \neq 0, \quad b_{\varphi}=\operatorname{Re}\left(\varphi C_{j}\right) \neq 0, \tag{6}
\end{equation*}
$$

where $\varphi \neq 0$ is a complex number; if $a_{0} b_{0}<0$ is valid for all complex $\varphi(\varphi \neq 0)$ satisfying (6), we then define $\xi\left(=Z_{j}\right)$ to be a zero of $S(Z)$ of multiplicity $n+1$, otherwise n.

If $S(Z) \equiv 0$ for $Z \in \Gamma_{j}$ then we say $S(Z)$ has a zero interval and count it as a zero of $S(Z)$ of multiplicity $n+1$.

Let $l_{\omega}(x)$ be a linear transformation $Z=\omega(x-i) /(x+i)$, where x is a real variable, i is the imaginary unit, ω is a point on Γ_{r}. The set $A_{,}=\left\{Z_{j}\right\}_{1}^{r}$ is transformed onto the set $A_{x}=\left\{x_{j}\right\}_{1}^{r}$ by l_{ω}^{-1} such that $l_{\omega}: E_{1} \rightarrow \Gamma$.

$$
-\infty<x_{1}<\cdots<x_{r}<+\infty .
$$

If $\omega=Z_{1}$, then the point Z_{1} corresponds to infinity, and $\left\{Z_{j}\right\}_{2}^{r}$ are converted to $\left\{x_{j}\right\}_{2}^{r}$.

Now we define a function $T_{\omega}(x)$ as follows,

$$
\begin{equation*}
T_{\omega}(x)=\operatorname{Re}\left\{\overline{S^{(n)}}(\omega)(-2 \omega i)^{-a}(x+i)^{n} S(Z(x))\right\} \tag{7}
\end{equation*}
$$

where α is the multiplicity of the zero ω of $S(Z), \alpha \geqslant 0$; in a neighbourhood of the point $\omega, S(Z)$ can be written as $S(Z)=(Z-\omega)^{a} g(Z), g(\omega) \neq 0$, $g(Z)=\sum_{0}^{n}{ }^{n} b_{l} Z^{\prime}$. Since $Z-\omega=-2 i \omega /(x+i), S^{(\alpha)}(\omega)=\alpha!g(\omega)$, we have $T_{\omega}=\alpha!\operatorname{Re}\left\{\overline{g(\omega)} \sum_{i=1}^{n-n} b_{l} \omega^{\prime}(x-i)^{\prime}(x+i)^{n}{ }^{n}{ }^{\prime}\right\}$. for $|x|$ sufficiently large. We see that the main term in $T_{\omega}(x)$ is $x^{n-a}\left(x \in 0_{0}\right)$, its coefficient is $\alpha!|g(\omega)|^{2}>0$, therefore $T_{\omega}(x) \not \equiv 0, x \in E_{1}$. Since $S(Z) \in \neq(n)$. it is easy to verify that $T_{\omega}(x)$ belongs to $R T(r, n)$.

If $\bar{Z} \neq \omega$ is a zero of $S(Z)$ of multiplicity β and $\bar{x}=l_{6}{ }^{1}(\bar{Z})$ is the corresponding point in E_{1}, it is not hard to see that $T_{\omega}(x)$ has a zero at \bar{x} of multiplicity at least β. Therefore

$$
\begin{equation*}
Z(S, \Gamma \mid \omega) \leqslant Z\left(T_{\omega}, E_{1}\right) \tag{8}
\end{equation*}
$$

We define a subclass $G_{n}(\Gamma) \subseteq \gamma(n)$ as follows. $S(Z) \in G_{n}(\Gamma)$ if $R(x)=$ $T_{\omega}(x) /(x-\lambda)^{\prime \prime} \in G_{n, 1}\left(E_{1}\right)$ for any ω and λ. We then have

Theorem 3. Let $S(Z) \in G_{n}(\Gamma)$. Then one has

$$
\begin{aligned}
Z(S, \Gamma) & \leqslant r . & & \text { if } n, \text { rodd or } n, \text { reven }, \\
& \leqslant r-1 . & & \text { otherwise. }
\end{aligned}
$$

If $S(Z)$ has a simple zero ξ, ξ is a knot, then $Z(S, \Gamma) \leqslant r-1$. If $S(Z)$ has a simple zero ξ, ξ is not a knot, then

$$
\begin{aligned}
Z(S, \Gamma) & \leqslant r, & & \text { if } n, r \text { odd } \\
& \leqslant r-1, & & \text { otherwise } .
\end{aligned}
$$

The proof of this theorem depends on some lemmas.
Suppose $S(Z) \equiv 0, Z \in \Gamma_{j}$, but $S(Z) \neq 0, Z \in \Gamma$. With no loss of generality, we may assume $j=r$. By using a linear transformation $l_{\omega}(x)$, $\omega \in \Gamma_{r}$, we obtain a function $\hat{S}(x)=(x+i)^{n} S(Z(x))$ belonging to $C T(r, n)$ such that either the real part of $\hat{S}(x)$ or the imaginary part cannot vanish identically on E_{1}. Denote one of them by $T(x), T(x) \not \equiv 0, x \in E_{1}$, but $T(x) \equiv 0, x \in \gamma_{0} \cup \gamma_{r}$. From Lemma 2, (ii), and (8), we infer $Z\left(S, \Gamma \mid \Gamma_{r}\right) \leqslant$ $Z\left(T ;\left(x_{1}, x_{r}\right)\right) \leqslant r-n-2$. In view of the definition of the zero interval of $S(Z)$, we obtain $Z(S, \Gamma) \leqslant r-1$. We have the following

Lemma 3. Let $S(Z) \in \prime(n)$, if $S(Z) \neq 0, Z \in \Gamma$. but for some k. $S(Z) \equiv 0, Z \in \Gamma_{k} ;$ then $Z(S, \Gamma) \leqslant r-1$.

From now on, we assume that $S(Z), T_{\omega}(x)$ and $R(x)$ have no zero intervals.

If $S(Z) \in \mathscr{F}(n)$ and r (the number of knots) $\leqslant n+1$, then $S(Z)$ will be a polynomial of degree n; thus, later on, we only consider the case $r \geqslant n+2$.

Lemma 4. Let $S(Z) \in \not(n), S(Z)$ have the following form on Γ_{r}, $S(Z)=a_{n} Z^{n}+\cdots+a_{0}, Z \in \Gamma_{r}, a_{n} \neq 0$. Then we can find a point ω on Γ_{r} such that

$$
\begin{equation*}
\left.S(\omega) \neq 0, \quad \operatorname{Im}\left\{\omega \overline{S(\omega)} S^{\prime}(\omega)\right)\right\}=0 \tag{9}
\end{equation*}
$$

From Lemma 4, $A_{n}=|S(\omega)|^{2}>0, A_{n-1}=2 \operatorname{Im}\left|\overline{S(\omega)} \omega S^{\prime}(\omega)\right| \neq 0$. We then can choose λ such that

$$
\begin{equation*}
A_{n-1}+n \lambda A_{n} \neq 0 \tag{10}
\end{equation*}
$$

From (8) and Lemma 2 we have
Lemma 5. If $n=1, S(Z) \in \mathscr{F}(1)$, then

$$
\begin{aligned}
Z(S, \Gamma) & \leqslant r, & & \text { rodd }, \\
& \leqslant r-1, & & \text { reven } .
\end{aligned}
$$

From the proof of Theorem 2 and (8), we have
Lemma 6. If $S(Z) \in G_{n}(\Gamma)$, then $Z(S, \Gamma) \leqslant r+1$.
Corollary. If $S(Z) \in G_{n}(\Gamma)$, then the total number of zeros of the function $T_{\omega}(x)$ defined by (7) can be estimated as $Z\left(T_{\omega}, E_{1}\right) \leqslant r+1$.

Lemma 7. Let $T_{\omega}(x)$ be defined by (7), ω satisfy (9), $n \geqslant 2$. If $T_{\omega}(x)$ has no zero with multiplicity less than 2 , then

$$
\begin{aligned}
Z\left(T_{\omega}, E_{1}\right) & \leqslant r . & & \text { if } r, n \text { odd or } r, n \text { even }, \\
& \leqslant r-1, & & \text { otherwise. }
\end{aligned}
$$

Proof. In view of the hypothesis, it is easy to prove that there are two knots x_{k}, x_{l} such that $T\left(x_{k}\right) \neq 0, T\left(x_{l}\right) \neq 0$. Since $A_{k} \neq 0, A_{k-1} \neq 0$, we may choose $\lambda=x_{k}$ (or x_{l}) satisfying (10); since λ is a knot, we obtain from Theorem 2 that $Z\left(T_{\omega}, E_{1}\right)=Z\left(R, E_{1}\right) \leqslant r$. If n is odd (even) $T_{\omega}(x)$ has an odd (even) number of sign changes, so Lemma 7 is proved. Q.E.D.

Lemma 8. If $S(Z) \in G_{n}(\Gamma), S(Z)$ has a simple zero ξ, ξ is a knot, then $Z(S, \Gamma) \leqslant r-1$.

Proof. With no loss of generality, we assume $\xi=Z_{1}$. Under a linear transformation $l_{Z_{1}}(x)$, we get the real spline $T(x)=\operatorname{Re}\left\{\left(-2 i Z_{1}\right)^{-1} \overline{g\left(Z_{1}\right)}\right.$ $\left.(x+i)^{n} S(Z(x))\right\}$, where $g(x)$ is a polynomial of degree $n-1 . T(x)$ has knots $\left\{x_{i}\right\}_{2}^{r}$, and $T(x)$ is a polynomial of degree $n-1$ on $\left(-\infty, x_{2}\right)$ and $\left(x_{r}, \infty\right)$.

Case 1.

$$
T^{(n)}\left(x_{r}-\right) \neq 0, \quad T^{(n)}\left(x_{2}+\right) \neq 0
$$

Let λ be a point on the real x axis satisfying
(a) $T(\lambda) \neq 0$.
(b) $\lambda<x_{2}-L$.
where $\quad L=\operatorname{Max}\left\{1,2^{n}(2 n-1)!M / m\right\}, \quad M=\operatorname{Max}_{1 \leqslant j \leqslant n}\left|T^{(i)}\left(x_{2}\right)\right|, \quad m=$ $\left|T^{(n-1)}\left(x_{2}\right)\right|$. Let $R(x)=T(x) /(x-\lambda)^{n}$, since $T^{(n-1)}\left(x_{2}\right)>0 . T^{(n)}\left(x_{2}-\right)=$ $T^{(n)}\left(x_{r}+\right)=0$. Therefore, $\quad S^{+}\left((-1)^{l} R^{(l)}\left(x_{2}+\right)\right)_{n}^{n} 1_{1}+S^{+}\left(\left(R^{(l)}\left(x_{2}-\right)\right)_{n, 1}^{n}=\right.$ $1+S^{+}\left(-T^{(n-1)}\left(x_{2}\right), T^{(n)}\left(x_{2}+\right)\right)$.

Following the proof of Theorem 2, we have

$$
Z\left(R, I_{0} \cup I_{1}\right)=r-1-\succeq h_{i}-\text { ป } H_{j}, \quad h_{2} \geqslant 1, \quad h_{j} \geqslant 0, \quad H_{j} \geqslant 0 .
$$

Hence $Z\left(R, I_{0} \cup I_{1}\right) \leqslant r-2, Z\left(T, E_{1}\right) \leqslant r-2$; since $S(Z)$ has a zero at Z_{1}, then $S(Z, \Gamma) \leqslant r-1$.

Case 2.

$$
T^{(n)}\left(x_{2}+\right)=0, \quad T^{(n)}\left(x_{3}+\right)=0
$$

We choose λ satisfying

$$
\text { (c) } \quad T(\lambda) \neq 0, \quad \text { (d) } \quad \lambda<x-K
$$

where $\quad K=\operatorname{Max}\left\{1,2^{n}(2 n-1)!M_{1} / m, \quad 2^{n}(2 n-1)!M_{1} / m_{2}, \quad 2^{n}(2 n-1)!\right.$ $\left.M_{2} / m_{1}\right\}, \quad M_{1}=\operatorname{Max}_{1 \leqslant j \leqslant n-1}\left|T^{(j)}\left(x_{3}\right)\right|, \quad M_{2}=\operatorname{Max}_{1 \leqslant j \leqslant n-1} \mid T^{(j)}\left(x_{2}\right), \quad m_{1}=$ $\left|T^{(n-1)}\left(x_{2}\right)\right|, m_{2}=\left|T^{(n)}\left(x_{3}+\right)\right|$. We then have $h_{2}=S^{+}\left((-1)^{\prime} R^{(n)}\left(x_{2}+\right)\right)_{n 1}^{n}+$ $S^{*}\left(R^{(t)}\left(x_{2}-\right)\right)_{n-1}^{n}=1, \quad h_{3}=S^{+}\left((-1)^{l} R^{(t)}\left(x_{2}+\right)\right)_{n-1}^{n}+S^{+}\left(R^{(t)}\left(x_{2}\right)\right)_{n, 1}^{n} \geqslant 1$; therefore, $\quad Z\left(R, I_{0} \cup I_{1}\right) \leqslant r-3, \quad Z\left(T, E_{1}\right) \leqslant r-3, \quad Z(S, \Gamma) \leqslant r-2 . \quad$ The remaining cases can be treated in the same way.

Lemma 9. Let $S(Z) \in G_{n}(\Gamma)$. If $S(Z)$ has a simple zero ξ, ξ is not a knot, then
$Z(S, \Gamma) \leqslant r-1, \quad$ if n is even or if n odd and r even,

$$
\leqslant r, \quad n, r \text { odd }
$$

Proof. With no loss of generality, let ξ belong to the interior of $\Gamma_{,}$. Under a linear transformation $l_{\xi}(x): Z=\xi(x-i) /(x+i)$, we obtain a real spline $T(x)$ with knots $\left\{x_{j}\right\}_{1}^{r}$, and $T(x)=\sum_{0}^{n-1} A_{k} x^{k}, x \in \gamma_{0} \cup \gamma_{r}, A_{n-1}>0$. We choose $\lambda, T(\lambda) \neq 0$, using the method in the proof of Lemma 8 (but here we take x_{1} instead of x_{2}) we have $h_{1} \geqslant 1$ and

$$
\begin{aligned}
Z\left(R, I_{0} \cup I_{1}\right) & \leqslant r-\sum_{1}^{r} h_{j}-ป H_{j} \leqslant r-1, \\
Z\left(T, E_{1}\right) & \leqslant r-1 .
\end{aligned}
$$

By using the definition of the multiplicity of zero of real splines it is easy to verify the assertion of Lemma 9 for the following three cases: (i) n odd, r odd, (ii) n odd, r even, (iii) n even, r odd.

Now suppose n, r are even. We then choose λ such that the main term in the expansion (5) for $R^{(1)}(x)$ is one which contains the highest derivative of $T(x)$ with respect to x when $x \in\left|x_{1}, x_{k}\right|$.

Since $T^{(n-1)}(x)$ is a linear function of x on $\left.\gamma_{j}\left(\gamma_{j}=\mid x_{j}, x_{j+1}\right)\right), 0 \leqslant j \leqslant r$, $x_{0}=-\infty, \quad x_{r+1}=+\infty, \quad T^{(n-1)}\left(x_{1}\right) T^{(n-1)}\left(x_{r}\right)=\left((n-1)!A_{n-1}\right)^{2}>0$. $T^{(n-1)}(x)$ has an even number of sign changes, since r is even, thus there is one interval r_{k} where $T^{(n-1)}(x)$ does not change sign. We may assume $T^{(n-1)}(x)>0, x \in r_{k}$; hence

$$
\begin{equation*}
T^{(n-1)}\left(x_{k-1}\right)>0, \quad T^{n-1)}\left(x_{k}\right)>0 \tag{11}
\end{equation*}
$$

By the choice of λ, we assert $R^{(n)}\left(x_{k-1}-\right) \neq 0$ and $R^{(n)}\left(x_{k}+\right) \neq 0$. From the proof of Theorem 2 we now have the following expression

$$
\begin{align*}
W_{t}\left(x_{k-1}\right) & +W_{k}\left(x_{k}\right) \\
= & \left(\alpha_{k-1}-1\right)+S^{+}\left(R^{(n \cdot 1)}\left(x_{k-1}\right), R^{(n)}\left(x_{k},-\right)\right)+\left(\alpha_{k}-1\right) \\
& +S^{+}\left(R^{(n-1)}\left(x_{k}\right), R^{(n)}\left(x_{k}-\right)\right)+S^{+}\left(-R^{(n-1)}\left(x_{k-1}\right), R^{(n)}\left(x_{k-1}+\right)\right) \\
& +S^{+}\left(-R^{(n-1)}\left(x_{k}\right), R^{(n)}\left(x_{k}+\right)\right) . \tag{12}
\end{align*}
$$

If $T^{(n)}\left(x_{k-1}+\right) \neq 0$, the choice of λ yields $\operatorname{sign}\left(R^{(n)}\left(x_{k-1}+\right)\right)=$ $\operatorname{sign}\left(T^{(n)}\left(x_{k-1}+\right)\right)=\operatorname{sign}\left(T^{(n)}\left(x_{k}-\right)\right)=\operatorname{sign}\left(R^{(k)}\left(x_{k}-\right)\right) \neq 0, \quad$ from \quad (11), $R^{(n-1)}\left(x_{k-1}\right) R^{(n-1)}\left(x_{k}\right)>0$; hence

$$
\begin{equation*}
W_{d}\left(x_{k-1}\right)+W_{f}\left(x_{k}\right) \geqslant \alpha_{k-1}+\alpha_{k}-1 . \tag{13}
\end{equation*}
$$

But $\operatorname{sign}\left(R^{(n)}\left(x_{1}+\right)\right)=\operatorname{sign}\left(T^{(n)}\left(x_{1}+\right)\right), \operatorname{sign}\left(R^{(n)}\left(x_{1}-\right)\right)=\operatorname{sign}\left(-T^{(n}{ }^{1 \prime}\left(x_{1}\right)\right)$. $\operatorname{sign}\left(R^{(n-1)}\left(x_{1}\right)\right)=\operatorname{sign}\left(T^{(n}{ }^{1 \prime}\left(x_{1}\right)\right)$, so that

$$
\begin{align*}
& S^{+}\left((-1)^{\prime} R^{(1)}\left(x_{1}+\right)\right)_{n-1}^{n}+S^{+}\left(R^{(1)}\left(x_{1}-\right)\right)_{n}^{n} \\
& \quad=S^{+}\left(-T^{(n-1)}\left(x_{1}\right), T^{(n)}\left(x_{1}+\right)\right)+S^{\prime}\left(T^{(n \quad n}\left(x_{1}\right),-T^{(n-1)}\left(x_{1}\right)\right) \\
& \quad=S^{+}\left(-T^{(n-1)}\left(x_{1}\right), T^{(n)}\left(x_{1}+\right)\right)+1 . \tag{14}
\end{align*}
$$

From the proof of Theorem 2, we have

$$
\begin{equation*}
W_{\varepsilon}\left(x_{1}\right) \geqslant \alpha_{1} . \tag{15}
\end{equation*}
$$

From (13), (15), if $k>2$, we conclude from (13), (15)

$$
W_{k}\left(x_{1}\right)+W_{k}\left(x_{k-1}\right)+W_{k}\left(x_{k}\right)+1 \geqslant \alpha_{1}+\alpha_{k-1}+\alpha_{k},
$$

namely, $h_{1}+h_{k-1}+h_{k} \geqslant 2$. We then have $Z\left(R, I_{0} \cup I_{1}\right) \leqslant r-2$.
If $k=2$, then from (12), (14) we have $\alpha_{1}+\alpha_{2} \leqslant W_{t}\left(x_{1}\right)+W_{t}\left(x_{2}\right)$, namely, $h_{1}+h_{2} \geqslant 2$. Then from the proof of Theorem 2, we infer that $Z\left(R, I_{0} \cup I_{1}\right) \leqslant r-2$.

The remaining cases can be treated in the same way, so that we still have $Z\left(R, I_{0} \cup I_{1}\right) \leqslant r-2$; then $Z\left(T, E_{1}\right) \leqslant r-1$, hence $Z(S, \Gamma) \leqslant r-1$. Q.E.D.

From Lemmas 3, 5, 7, and 8 and (8), Theorem 3 follows directly.

References

1. J. H. Ahlberg. Splines in the Complex Plane. in "Approximations with Special Emphasis on Spline Functions" (I. J. Schoenberg, Ed.). 1969.
2. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, Properties of analytic spline. I. complex polynomial splines. J. Math. Anal. Appl. 27 (1969). 262-278.
3. J. H. Ahlberg. E. N. Nilson. and J. L. Walsh, Complex polynomial splines on the unit circle, J. Math. Anal. Appl. 33 (1971). 234-257.
4. J. H. Ahlberg. E. N. Nilson. and J. L. Wal.sh. Complex cubic splines, Trans Amer. Math. Soc. 129 (1967), 391-413.
5. Han-Lin Chen, Complex spline functions, Scientia Sinica, 24 (1981).
6. Han-Lin Chen. Interpolation and Approximation on the Unit Circle. Part 1. in "Mathematics of Computation," No. 5/80, Univ. of Trondheim. 1980.
7. Han-Lin Chen. Complex Harmonic Splines, Interpolation and Approximation on the Unit Circle, Part II, in "Mathematics of Computation," No. 3/81, Univ. of Trondheim. 1981.
8. S. Karlin and C. Micchelli. The fundamental theorem of algebra for monosplines satisfying boundary conditions. Israel J. Math. 11 (1972), 405-451.
9 K. K. Matur and A. Sharma, Discrete polynomial splines on the circle. Acta Math. Acad. Sci. Hungar. 33 (1979).
9. A. A. Melkman, The Budan-Fourier theorem for splines. Israet J. Math. 19 (1974). 256-263.
10. A. A. Mel.kman. Interpolation by splines satisfying mixed boundary conditions. Israel J. Math. 19 (1974), 369-381.
11. C. Micchelli. The fundamental theorem of algebra for monosplines with multiplicities, in "Linear Operators and Approximation." Proceedings, Conference in Oberwolfach (P. L. Butzer, J. P. Kahane, and B. Sz. Nagy. Eds.), pp. 419-430. Birkhäuser, Basel. 1972.
12. C. A. Micchelli and A. Sharma. Spline Function on the Circle: Cardinal L-Splines Revisited. MRC. TSR No. 1918.
13. I. J. Schoenberg. On polynomial Spline Functions on the Circle (I and II). in "Proceedings of the Conference on Constructive Theory of Functions" (G. Alexits and S. B. Steckin, Eds.), pp. 403-418, Budapest. 1972.
14. L. L. Schumaker. Zeros of spline functions and applications. J. Approx. Theory 18 (1976), 152-168.
15. J. Tzimbalario, Interpolation by complex splines. Trans. Amer. Math. Soc. 243 (1978). 213-222.
